About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Compute the maximum value of a one-dimensional double-precision floating-point ndarray.
npm install @stdlib/stats-base-ndarray-dmaxAlternatively,
- To load the package in a website via a
scripttag without installation and bundlers, use the ES Module available on theesmbranch (see README). - If you are using Deno, visit the
denobranch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umdbranch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var dmax = require( '@stdlib/stats-base-ndarray-dmax' );Computes the maximum value of a one-dimensional double-precision floating-point ndarray.
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var xbuf = new Float64Array( [ 1.0, 3.0, 4.0, 2.0 ] );
var x = new ndarray( 'float64', xbuf, [ 4 ], [ 1 ], 0, 'row-major' );
var v = dmax( [ x ] );
// returns 4.0The function has the following parameters:
- arrays: array-like object containing a one-dimensional input ndarray.
- If provided an empty one-dimensional ndarray, the function returns
NaN.
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var dmax = require( '@stdlib/stats-base-ndarray-dmax' );
var xbuf = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
var x = new ndarray( 'float64', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
console.log( ndarray2array( x ) );
var v = dmax( [ x ] );
console.log( v );#include "stdlib/stats/base/ndarray/dmax.h"Computes the maximum value of a one-dimensional double-precision floating-point ndarray.
#include "stdlib/ndarray/ctor.h"
#include "stdlib/ndarray/dtypes.h"
#include "stdlib/ndarray/index_modes.h"
#include "stdlib/ndarray/orders.h"
#include "stdlib/ndarray/base/bytes_per_element.h"
#include <stdint.h>
// Create an ndarray:
const double data[] = { 1.0, 2.0, 3.0, 4.0 };
int64_t shape[] = { 4 };
int64_t strides[] = { STDLIB_NDARRAY_FLOAT64_BYTES_PER_ELEMENT };
int8_t submodes[] = { STDLIB_NDARRAY_INDEX_ERROR };
struct ndarray *x = stdlib_ndarray_allocate( STDLIB_NDARRAY_FLOAT64, (uint8_t *)data, 1, shape, strides, 0, STDLIB_NDARRAY_ROW_MAJOR, STDLIB_NDARRAY_INDEX_ERROR, 1, submodes );
// Compute the maximum value:
const struct ndarray *arrays[] = { x };
double v = stdlib_stats_dmax( arrays );
// returns 4.0
// Free allocated memory:
stdlib_ndarray_free( x );The function accepts the following arguments:
- arrays:
[in] struct ndarray**list containing a one-dimensional input ndarray.
double stdlib_stats_dmax( const struct ndarray *arrays[] );#include "stdlib/stats/base/ndarray/dmax.h"
#include "stdlib/ndarray/ctor.h"
#include "stdlib/ndarray/dtypes.h"
#include "stdlib/ndarray/index_modes.h"
#include "stdlib/ndarray/orders.h"
#include "stdlib/ndarray/base/bytes_per_element.h"
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
int main( void ) {
// Create a data buffer:
const double data[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };
// Specify the number of array dimensions:
const int64_t ndims = 1;
// Specify the array shape:
int64_t shape[] = { 4 };
// Specify the array strides:
int64_t strides[] = { 2*STDLIB_NDARRAY_FLOAT64_BYTES_PER_ELEMENT };
// Specify the byte offset:
const int64_t offset = 0;
// Specify the array order:
const enum STDLIB_NDARRAY_ORDER order = STDLIB_NDARRAY_ROW_MAJOR;
// Specify the index mode:
const enum STDLIB_NDARRAY_INDEX_MODE imode = STDLIB_NDARRAY_INDEX_ERROR;
// Specify the subscript index modes:
int8_t submodes[] = { STDLIB_NDARRAY_INDEX_ERROR };
const int64_t nsubmodes = 1;
// Create an ndarray:
struct ndarray *x = stdlib_ndarray_allocate( STDLIB_NDARRAY_FLOAT64, (uint8_t *)data, ndims, shape, strides, offset, order, imode, nsubmodes, submodes );
if ( x == NULL ) {
fprintf( stderr, "Error allocating memory.\n" );
exit( 1 );
}
// Define a list of ndarrays:
const struct ndarray *arrays[] = { x };
// Compute the maximum value:
double v = stdlib_stats_dmax( arrays );
// Print the result:
printf( "max: %lf\n", v );
// Free allocated memory:
stdlib_ndarray_free( x );
}This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2026. The Stdlib Authors.