
Using databases to build better AI apps and agents .2

A

.4 . 5.3

Your guide to AI application
and agent development.

Unlocking AI’s
full potential
with operational
databases

B

Table of
contents
Chapter 1

Using databases to build
better AI apps and agents

Chapter 2

Six pillars for successful AI apps

Chapter 3

The technologies powering AI apps

Chapter 4

Putting these technologies to work
Chapter 5

Building with Google’s innovation

01

07

05

16

21

Using databases to build better AI apps and agents .2

1

.4 . 5.3

Everyone is building with AI. It can improve search. It can
personalize customer interactions. It can increase your
developer productivity. It can even write bedtime stories.

But as a developer, you know the reality behind the
hype. There’s a chasm between a simple AI demo
and a production-ready enterprise application that
users can trust.

In the AI era, developers are poised to become central
to enterprise innovation, not just as coders but as major
stakeholders. By connecting powerful models to reliable
data, they’re uniquely positioned to produce key insights
that drive business strategy and ensure customer
expectations are met. However, this shift comes with
its own set of challenges.

That’s because general-purpose AI models are limited
to answering general questions. But most apps need
to answer specific questions (like “What’s my account
balance?” or “Do you have a size 8 in stock?”), and that
requires integrating business-specific operational
information. Your databases can bridge this gap.

Operational databases help you create apps and agents
that are accurate in real time, contextual to the user’s
experience, and reliable at enterprise scale.

We’ll show you how to get started in this guide.

Using databases
to build better
AI apps and agents

Looking to get
started right away?
Discover the six pillars
for successful AI apps

Chapter 1

Go to page 5

Using databases to build better AI apps and agents .2

2

.4 . 5.3

Foundation models

A foundation model is typically a large language
model (LLM) that’s trained on a massive amount
of general data. It can be used to generate text
and other content, as well as perform other natural
language processing (NLP) tasks. Many foundation
models can understand and operate across different
types of formats, such as images, audio, and video.

As foundation models are trained on generalized
data, they can easily answer general questions
such as “What’s the capital of France?”. But their
knowledge is limited to the data they were trained
on. We’ll look at methods to bridge that gap by
integrating foundation models with your company’s
operational databases, providing them with the real-
time, proprietary information they need.

Level up your
users’ experience
Today’s users expect immediate and accurate answers
to their questions. So your app is under pressure to deliver.

Most of the information users are looking for sits in your
operational databases—such as your CRM, ERP, and
ecommerce data.

Questions like:

General-purpose AI models can’t answer questions like
these on their own—they need the information contained
in your operational databases. To meet user expectations,
integration of operational data into your app has moved
from a “nice to have” to “complete by the end of the
next sprint.”

Andi Gutmans
VP and GM, Data Cloud, Google Cloud

Databases are the fuel for the
agentic era. Operational databases
bridge the gap between foundation
models and enterprise applications
to help deliver contextual, relevant,
and accurate user experiences.”

When will my shipment arrive?

My order arrived damaged. Can I have a replacement?

Do you have a black size 7 in stock at a store near me?

Using databases to build better AI apps and agents .2

3

.4 . 5.3

The tide is turning
to developers
AI is tackling enterprise challenges,
and it’s developers leading the charge.

Uber is using AI agents to streamline customer
service, helping users find solutions to their problems
quickly. Deloitte has a “Care Finder” agent, built with
Google Cloud, that helps care seekers find in-network
providers—often in less than a minute.

When enterprises achieve these domain-specific,
intelligent interactions, developers take a starring
role. While data scientists are essential for creating
the complex models that power AI, their expertise
is a scarce resource. As a result, companies are relying
on software developers to bridge the gap. This shift
places developers at the center of the action, making
them the critical engine for integrating AI models into
domain-specific, intelligent applications.

How are they innovating?

They’re employing techniques like retrieval augmented
generation to make foundation models dependable
for enterprise applications. They’re using open-source
protocols to connect AI agents and apps to their systems
and frameworks more efficiently. And they’re using
embeddings for proximity searches, particularly
in vector-enabled databases.

Not sure how to fully use AI to your advantage
as a developer? Don’t worry. You will by the time
you finish reading this paper.

The new era will be led by developers who build
deep proficiency in how to best leverage and integrate
AI technologies into applications.

Let’s make sure that’s you.

Andi Gutmans
VP and GM, Data Cloud, Google Cloud

I believe we are entering a ‘post-
training era’ in which application
developers will drive the bulk
of the innovation in applying
AI to solve business problems.”

https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders

Using databases to build better AI apps and agents .2

4

.4 . 5.3

AI is already here

Today, AI isn’t just a “nice to have,” it’s a fundamental
part of everyday apps—from displaying real-time
product availability in your online store to automatically
adjusting prices to match competitors. Even when the
user might not realize it, AI is working in the background
to personalize their experience based on past behavior
and to protect their data from potential threats.

The key need here is reliable, business-specific data.
By ensuring that AI outputs are consistently aligned with
the business’s true context, you can build more reliable
and trustworthy AI applications that deliver precise
and relevant insights.

The potential for implementing AI models and agents across
your tech stack is extraordinary. But the stakes for you
as a developer skyrocket accordingly. An agent with the
power to take action across your system has an inherently
larger blast radius than a simple chatbot that just answers
questions. An incorrect fact is a problem, but an incorrect
action in a production system is a crisis. That’s why it’s
essential to architect for trust, building robust safeguards
at the core of your application to verify an agent’s outputs—
and its reasoning—before it acts.

Even with high stakes, the solution lies in familiar territory.
The same principles you use for building any mission-
critical application—rigorous validation and testing against
a source of truth—are the keys to building safe AI. This is
where your database becomes the cornerstone of your
strategy. By providing verifiable, real-time data, it acts
as the essential guardrail, allowing you to build intelligent,
reliable, and fast applications with confidence.

Let’s look at some guidelines for enterprise AI apps.

AI models have come a long way, but it can still be
challenging to return relevant and accurate results
100% of the time.

Notoriously, models have an occasional tendency
to “hallucinate”—terminology for when an AI model
generates a factually incorrect or even nonsensical
answer. Since AI models are non-deterministic,
there is always a non-zero probability they will
produce an incorrect answer. As important as the
quality of the input data for training and predictions
is, AI agents and database integration also can make
a significant difference.

5

Six pillars for successful AI apps . 1 .4 . 5.3

The most powerful enterprise AI apps augment
foundation models by grounding them in operational
data. This approach is the key to achieving the six pillars
of a successful application: relevancy, reliability,
observability, scalability, security, and cost-effectiveness.

An AI app that achieves these pillars will provide your
users with the best experience, while minimizing risk
to the business.

Six pillars for
successful AI apps

Chapter 2

Relevancy

Deliver accurate and contextual information.

Grounding your model’s responses in your operational
database, which continuously stores and processes
your data, means that your results will be more accurate,
informative, and nuanced to the user’s specific intent.

1

Reliability
Ensure your app delivers when you need it to.

To build users’ trust in your organization, make sure
they can rely on your app. Your AI setup should
be highly available, resilient to failures, be simple
to maintain without causing disruptions or downtime,
and support disaster recovery.

 2

Observability

Understand your agents’ “why.”

An AI agent can feel like a black box. Observability
gives you the tools to look inside. It means tracing
every step of an agent’s decision-making process—
from the initial prompt to the specific database
queries it ran and the data it retrieved—to ensure
reliability and build trust.

 3

6

Six pillars for successful AI apps . 1 .4 . 5.3

A modern database gives you a solid foundation for pillars
like security and scalability, but these principles aren’t
just features you can flip on. They have to be architected.
Ultimately, it’s up to you, the developer, to build on that
database foundation, weaving all six principles into the
core logic of your AI agents to create a truly enterprise-
grade application.

Let’s dig into some of the technologies that developers
are using.

Cost-effectiveness
Build smart and spend smart.

AI models, especially the most powerful ones, have
significant operational costs, often tied to per-token
pricing for API calls. A successful AI app must deliver
value with a sustainable price tag, which requires
making smart architectural choices.

 6

Scalability
Grow when you need to. Shrink, too.

Have the flexibility to scale up or down without large
infrastructure changes. Look for a solution that gives
you horizontal scalability (at least for read operations)
and cross-region replication. Your app should be quick
to deploy and scale, and operate with high throughput
and low latency.

4

Security
Keep customer and company data secure.

You already ensure that your databases follow
security best practices. Make sure that your AI tools
do, too. Create an AI security policy and then ask about
your providers’ security standards. A strong defense
is built from every layer having security built in.

 5

. 2

7

The technologies powering AI apps .4 . 5 . 1

The technologies
powering AI apps

Chapter 3

Users expect prompt, personalized interactions.
But developers are finding that legacy databases
aren’t cutting it due to their lagging AI capabilities.
Thankfully, modern databases have excellent and
rapidly evolving AI support, and they can help you
bring these new AI capabilities to users.

Here are a few of the technologies that modern
enterprises are using to create AI apps that deliver
more relevant and reliable results:

•	 Long context windows

•	 Specialized AI models

•	 Agent-to-agent communication

•	 Tools

•	 Vector embeddings

•	 Vector search

•	 Retrieval augmented generation (RAG)

•	 Orchestration frameworks

Let’s have a look at each.

. 2

8

The technologies powering AI apps .4 . 5 . 1

This is a contrived example, since a short chat would
easily fit into a typical context window. But if the relevant
information is contained in a previous dialogue, tens or
hundreds of thousands of tokens ago, then the chatbot
might not be able to give a good answer.

A long context window comes with tradeoffs. It’s slower
than other methods of improving model accuracy and
may add new issues such as positional bias, sensitivity
to changes in information placement, difficulty
maintaining global coherence or performing complex
reasoning, and high computational cost. And model
vendors typically charge per token, so a longer context
window will raise your costs.

Long context windows
A context window is the amount of information
a foundation model can consider while generating
a response. So the longer the context window,
the more background information the model can
consider for the response.

A “token” is the smallest unit of text that carries
meaning for a language model. It’s often slightly
smaller than the size of a word.

Let’s say a user is using a travel chatbot agent
and includes the information that they’re heading
to Paris in March. After a number of lines of dialog, they
ask, “Can you recommend a good restaurant
for my trip?”

The quality of the response will vary depending
on the size of the context window. Any information
outside of the model’s context window won’t be
considered. So if the context window is too small,
the model wouldn’t know where the trip is to. In this
case, it may hallucinate or give an irrelevant response.

Please find me a hotel
in Paris for March 8-15

Can you recommend a good
restaurant for my trip?

What are some sights
I should see?

Hôtel A Hôtel B Hôtel C

Rue A Tour B Boutique C

Sure can!! Where are
you going? And when?

SHORT CONTEXT WINDOW RESPONSE:

LONG CONTEXT WINDOW RESPONSE:

Restaurant A Bistro B Cafe C

. 2

9

The technologies powering AI apps .4 . 5 . 1

Agent-to-agent
communication
AI technology has rapidly progressed beyond
single-purpose models into an era of multi-agent
systems. These systems involve multiple AI agents
acting, learning, communicating, and collaborating
autonomously—with each specializing in a particular
aspect of a task. Think of them like a team of experts,
where one agent is a skilled researcher, another is an
eagle-eyed fact checker, and a third is a seasoned writer
who can best synthesize the results into a concise report.

This collaborative approach enables systems to handle
more intricate workloads and produce more reliable
outputs—at faster speeds. For this kind of system to work,
the agents need to be able to understand each other,
share information, and synchronize their actions to avoid
bottlenecks, errors, or duplication of work. That’s where
the newly developed Agent2Agent Protocol (A2A) comes
into play, allowing AI agents to communicate, securely
exchange information, and coordinate actions—even if
they were built by different vendors.

Tools
For an AI agent to take meaningful action, it needs
access to data. In AI terminology, tools are specific
functions that provide data, for example, by querying
a product database, calling an external API, or retrieving
a customer’s order history.

By giving agents access to a library of reliable tools,
you enable them to interact with real-time data and
execute multi-step tasks. The challenge is that for
agents and tools to work together, especially in
a multi-agent system, they need a common language.

This is where the Model Context Protocol (MCP)
becomes critical. MCP is an open-source standard
that acts like a universal adapter for AI. Instead of
building custom, brittle connectors for each new data
source, MCP provides a universal plug. This means a
developer can build a tool (like a get_order_status
function) once and make it available to any agent
that understands the MCP standard, regardless of the
framework it was built with.

To make these tools available, they need to be hosted
on a server that acts as a secure gateway. This server
exposes your tools to the agentic world via the MCP
standard. It handles the secure connection to your
database, executes the function on the agent’s
behalf, and returns the result in a format the agent
can understand.

Specialized AI models
In some industries, the tide is shifting away from one-
size-fits-all gargantuan models to specialized AI models.
These specialized models are trained on a limited, but
deeper amount of information—a process often referred
to as ‘fine-tuning’. For certain applications, this can enable
apps and agents to answer more detailed questions.

As an example, imagine a medical practice that wants
to create a specialized AI model that can help diagnose
whether a mole is at risk of becoming cancerous.
One way to approach this is to take an off-the-shelf
open AI model, then tune that foundational model
on a custom data set to build specialized knowledge.

In this example, the medical practice might train the
model on a database of millions of past diagnoses,
including written descriptions of symptoms and visual
images. In doing so, they’re training the model on the
kind of information it needs to look for and the patterns
to notice, such as asymmetrical shapes and abnormal
discoloration. Now it can make a likely prediction based
on millions of past cases—and articulate that prediction.

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://en.wikipedia.org/wiki/Model_Context_Protocol

. 2

10

The technologies powering AI apps .4 . 5 . 1

Vector embeddings
Vector embeddings convert text, images, or other
content into vectors (numerical representations), enabling
a foundation model to understand semantic similarities
between words and phrases through a mathematical
formula. In linear algebra, a vector represents a position
in a virtual space, and if two objects are similar, then
the vectors will be neighbors in that virtual space.

Once converted, vector search enables retrieval of the
most relevant information by looking at the distance
between the vectors—a short distance means two pieces
of content are semantically similar. This means that matches
can be meaningful, rather than focusing on surface-level,
keyword-based similarity to the input question.

The foundation model defines your vector space,
so the analysis of whether two vectors are near or far from
another depends on the version of your specific model.

This need to compare semantic meaning is why
recommendation engines, search algorithms, and many
other natural language processing applications rely on
vector embeddings. They use vector search results
to ground foundation model responses, minimize
hallucinations, and provide more reliable information.

Google Cloud databases include support for vectors,
meaning you can streamline your embedding creation
and access processes using a database you already know.

Working with vector embeddings

Databases like AlloyDB can generate and store
billions of vector embeddings directly alongside
your existing operational data, all within a single
database. Learn how AlloyDB can:

•	 Generate and store vector embeddings
based on a model

•	 Index and query embeddings using
the pgvector extension

•	 Work with embeddings generated
outside the database

Get started

The pgvector extension for
PostgreSQL databases enables
you to store, index, and query
vectors—and run vector
similarity searches.

https://github.com/GoogleCloudPlatform/generative-ai/blob/main/embeddings/intro-textemb-vectorsearch.ipynb
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings
https://github.com/pgvector

. 2

11

The technologies powering AI apps .4 . 5 . 1

Vector search
Vector search is the engine that powers semantic
understanding in modern applications. If you search
for music, movies, or books like the ones you already
love—which are conceptually similar—that’s where
vector search comes in.

Instead of matching keywords, vector search queries
the numerical representations of your data—the
embeddings—to find the closest semantic (conceptual)
matches. It’s particularly useful when dealing with large
datasets of unstructured data like images, text, or audio,
where traditional search methods (based on exact
matches) might not be effective.

Vector search plays a crucial role in generative AI
applications because it can also be used to ground
AI models via prompts or tools, increasing relevance
and reducing hallucinations. Having this functionality
built into a general-purpose database means you can
search without the need to manage a specialized
vector database or ETL pipeline.

Choosing a search approach

Deciding which search algorithm to use is a classic
engineering trade-off between accuracy and
performance. Your choice between an exact
or an approximate algorithm will depend on
the specific requirements of your application.

K-nearest neighbors (KNN):
The exact method

The brute-force approach guarantees perfect
recall (accuracy) by comparing your query vector
against every other vector in your dataset. While this
provides the mathematically precise ground truth,
the computational cost is immense. It is best suited
for offline or academic workloads where absolute
precision is the top priority.

Approximate nearest neighbor (ANN):
High-performance

This is the approach used by virtually all large-
scale production systems. ANN algorithms use
sophisticated indexing techniques to intelligently
partition the vector space. Their ability to navigate
to the most likely search region means they can find
highly relevant neighbors with incredible speed,
trading a small, often negligible, amount of precision
for massive gains in performance and scalability.

Read more

An example search workflow

Generate embeddings with your data and pgvector
functionality. This example takes plain-text input
and fetches the nearest neighbors from a database,
relying on model-driven semantic parsing of the
text’s meaning.

SELECT id, name FROM items

 ORDER BY complaint_embedding

 <-> embedding(‘gemini-embedding-001’,
‘wind and rain protecting red jacket
for women’)::vector LIMIT 10;

https://cloud.google.com/alloydb/docs/ai/example-embeddings
https://docs.cloud.google.com/alloydb/docs/ai/work-with-embeddings?resource=google_ml#query
https://docs.cloud.google.com/alloydb/docs/ai/work-with-embeddings?resource=google_ml#query

. 2

12

The technologies powering AI apps .4 . 5 . 1

Retrieval augmented
generation (RAG)
Retrieval augmented generation is an AI technique that
combines the strengths of traditional information retrieval
systems—such as databases—with the capabilities of AI
models. It grounds your foundation model with fresh or
domain-specific data from your database to power more
accurate, up-to-date, and relevant responses.

This grounding can be approached in more than one
way. In a classic RAG workflow, the application first
retrieves relevant data and then augments the prompt
by “stuffing” this context directly into the model’s input.
A more modern and flexible approach, however, is to
provide the AI agent with tools. Instead of pre-fetching
data, the developer gives the agent a function (e.g.,
search_customer_orders) that it can choose to call
when it needs information. This tool-based method
allows the agent to reason more effectively and handle
more complex, multi-step queries.

Regardless of the method, RAG is highly efficient.
By retrieving only the necessary data, it reduces the
reliance on large context windows and, most importantly,
provides the specific context needed to generate highly
accurate and relevant responses.

Critically, RAG enables you to use the foundational model
as-is, without asking the vendor to update it every time
you update your database.

Meet AlloyDB

AlloyDB is Google Cloud’s PostgreSQL-compatible
database that offers superior performance, availability,
and scale. It’s optimized for enterprise AI apps that
need real-time and accurate responses. It delivers
superior performance for transactional, analytical,
and vector workloads—and offers the same vector
search algorithm (ScaNN) used by Google Search.

And with Gemini, you get AI-powered assistance
through every stage of the database journey, from
development and performance optimization to fleet
management, governance, and migration.

AlloyDB can deliver up to 4 times faster vector queries
and up to 10 times faster filtered vector search queries
than the HNSW index in standard PostgreSQL.

AlloyDB AI helps developers more easily and efficiently
combine the power of foundation models with real-
time operational data by providing built-in, end-to-end
support for vector embeddings, natural language
processing, and other AI needs.

AlloyDB Omni is a downloadable edition of AlloyDB built
with portability and flexibility in mind. Run enterprise-
grade, AI-enabled applications anywhere: on premises,
at the edge, across clouds, or even on your laptop.

Build AI apps with AlloyDB AI.

Get started

https://cloud.google.com/blog/products/ai-machine-learning/rag-with-databases-on-google-cloud
https://cloud.google.com/alloydb
https://gemini.google.com/
https://cloud.google.com/products/alloydb?hl=en
https://cloud.google.com/alloydb/ai
https://cloud.google.com/alloydb/omni
https://cloud.google.com/alloydb/docs/ai

. 2

13

The technologies powering AI apps .4 . 5 . 1

Let’s see how RAG works in a common scenario:
a chatbot agent for a retailer.

A customer wants a suggestion for a toy for a
five-year-old child. Using only a foundation model,
the chatbot could reply about general trends and
age appropriateness, but could not align those
suggestions with products the retailer actually sells.

By augmenting the standard foundation model with
real-time inventory and product information from
the retailer’s operational database, the chatbot can
use RAG to answer a wide range of questions about
availability, pricing, and return policies. It can even
provide a pointer to the store closest to the customer
that has the recommended toy in stock. That’s the
type of personalized response that helps close a sale.

What’s a prompt?

You’re probably already familiar with the idea of a prompt: the input that you provide to a model
to elicit a response. When using consumer-oriented AI, it’s the question or statement that
you type into the text field: “Gemini, what’s the largest stadium in the world?”

Inside AI apps, the prompt becomes much more powerful. It evolves in two key ways:

1 2Context-augmented prompts: In a classic
RAG system, the application first retrieves
relevant data from a database, then augments
the user’s question with this data. The final
prompt sent to the model includes both the
original question and the retrieved context.

Instructional agent prompts: In modern agentic
systems, the prompt evolves further into a
mission briefing. Instead of just stuffing in raw
data, the prompt provides instructions that tell an
agent how to find the answer. This prompt might
include the user’s goal, a description of available
tools (like a database query function or an API),
and rules for how the agent should behave.

So, while prompts are changing, they are still critical. They’re the primary mechanism
through which developers guide and control the behavior of powerful AI agents.

. 2

14

The technologies powering AI apps .4 . 5 . 1

Operational information is returned from
the database

The agent receives the data from the tool/
database and synthesizes it with the original
query and calls the foundation model to
generate a final, fact-based answer

An application-specific verification check on the
resultant output takes place, and the process is
repeated if necessary to improve the answer

The app returns a response to the user

How does RAG typically work?

The user enters a question (prompt)
into the app

The application uses a foundation model
to understand user intent and formulate
a data query

The app calls the required tools,
which are hosted on the MCP server

The MCP server executes the tools,
which query the operational database

The database uses the embedding model
and vector search to get results

1

 9
 5

 2

 3

 4

A verification step, often using the database as a
source of truth, is a critical safeguard against model
hallucinations and ensures enterprise-grade reliability.

The more enterprises can ground foundation models
in their real-time information and enterprise data, the
more accurate their apps become.

 8

 6

 7

. 2

15

The technologies powering AI apps .4 . 5 . 1

Orchestration frameworks
While a single call to a foundation model can be powerful,
the frontier of AI development lies in building autonomous
agents. An agent isn’t just a simple prompt-and-response
loop—it’s a system that can plan, reason, and execute
complex tasks like managing conversations, using tools,
and handling API calls. Building these capabilities from
scratch requires a lot of repetitive “plumbing” code.

This is where orchestration frameworks are key. They
provide the operating system for your agents by managing
intricate workflows and streamlining essential tasks.
For example, a simple but critical task is maintaining
conversation history. A foundation model is inherently
stateless—it doesn’t remember past interactions. Instead
of manually coding the logic to store, retrieve, and append
chat history to every prompt, an orchestration framework
provides pre-built instructions to handle this automatically.

By providing this essential scaffolding, orchestration
frameworks make it possible to build sophisticated,
reliable, and scalable agents much more quickly,
while keeping your code simple.

Some leading orchestration frameworks are LangChain,
LlamaIndex, and Google’s own Agent Development Kit.

Not all AI technologies
are created equal
We’ve covered a number of different techniques for
achieving more accurate responses from AI models.
How do they stack up? Let’s compare.

Consider an HR chatbot agent that employees can
use to ask questions about policies. A foundation model
could reference general HR information, but would be
unable to reference particular company policies.

And it goes without saying that when an employee wants
to know how much annual leave they have available,
they want to know the exact number of hours in their
leave balance, not a statement about legal requirements
or a general average.

It’s possible to input an employee’s leave history into
a long context window, but this method can be slow,
prohibitively expensive, and may not produce the right
result if the context window isn’t long enough.

You can attempt to use vector search over the
employee’s leave history, but again, this may not
produce accurate results because a semantically
relevant answer isn’t what the employee is interested in.

With RAG accessing the employee’s documents
and company policy, the agent can respond with
the employee’s exact leave balance. Guided by
an orchestration framework, the agent would select
the right tool—like a get_leave_balance function.
This tool, exposed via a server using a standard like
MCP, would securely query the HR database and return
the exact number, allowing the agent to provide a precise
and trustworthy answer.

Learn how to build with:
•	 LangChain

•	 LlamaIndex

•	 Agent Development Kit

https://www.langchain.com/
https://www.llamaindex.ai/
https://google.github.io/adk-docs/
https://cloud.google.com/alloydb/docs/ai/langchain
https://cloud.google.com/alloydb/docs/ai/build-llm-powered-applications-using-llamaindex
https://google.github.io/adk-docs/

16

Putting these technologies to work . 5. 2 . 1 .3

Putting these
technologies to work

Chapter 4

As an AI developer using techniques like RAG, there
are a number of decisions you need to make. Each choice
comes with tradeoffs that you’ll want to consider
depending on your particular use case.

Here are some questions to ask:

•	 Which foundation model(s) should I use?
Different models have distinct strengths—for example,
some have built a reputation for exceptional coding
abilities and others for rigorous logical reasoning.
Your choice should align with your application’s primary
function, and you can easily integrate multiple models,
such as Gemini and others.

•	 Which database should I use?
This decision will be driven not only by your AI needs,
but by your database needs more broadly.

•	 How should I retrieve information from the database:
by creating custom APIs or using SQL queries?
Custom APIs can execute any database query, including
structured SQL queries and vector search, on behalf
of the model—and are accurate and secure. However,
they’re not flexible enough to handle the full range of
end-user questions. SQL statements are fast but take
skill to write, including the skill to make them secure.

•	 Should I use an orchestration framework?
This depends on the complexity of what you’re building.
Typically, as soon as your app needs to function like an
agent, using multi-step chains of reasoning, deciding
between different tools (like calling an API vs. querying
a database), or implementing a complex RAG workflow,
a framework provides the essential scaffolding.

•	 Do you need a specialized vector database?
Not necessarily. Many popular databases include support
for vectors, and your existing database may allow you
to easily add a vector column or index. This way, you don’t
need to learn and install a new database.

All Google Cloud databases offer low-latency vector
search, so you get instantaneous, relevant responses
no matter how large the dataset or how many parallel
requests hit the system. This makes for a better user
experience across applications like search, conversational
AI, and personalized recommendations.

Although vector search is important, your app probably
also needs to store non-vector data and be scalable,
secure, and highly available. A specialized vector database
may or may not be the right fit for your core considerations,
depending on the requirements of your app.

17

Putting these technologies to work . 5. 2 . 1 .3

Codelabs: Putting RAG
to work
Even the best off-the-shelf RAG techniques require
some learning. Below, we’ve included a couple
of tutorials to help you get started implementing
RAG in your application.

Google Developers Codelabs are guided tutorials
that give you hands-on coding experience. In addition
to the labs we highlight in this paper, you can go deeper
and search the entire Codelabs library to find articles
about the technologies you’re looking at, such as
RAG or AlloyDB.

Explore all AI & Machine Learning codelabs

Colab: Use RAG and the Netflix
movie dataset using LangChain

If you’ve decided that a framework is right for
your application, try this codelab.

Learn how to create a powerful, interactive
AI application using RAG powered by AlloyDB
for PostgreSQL and LangChain. This application
is grounded in a Netflix Movie dataset, enabling you
to interact with movie data in exciting new ways.

You’ll learn how to:

•	 Deploy an AlloyDB instance

•	 Use AlloyDB as a VectorStore

•	 Use AlloyDB as a DocumentLoader

•	 Use AlloyDB for ChatHistory storage

Get the notebook

create the ConversationalRetrievalChain

rag_chain = ConversationalRetrievalChain.from_llm(

lm=llm,

retriever=retriever,

verbose=False,

memory=memory,

condense_question_prompt=condense_question_
prompt_passthrough,

combine_docs_chain_kwargs={“prompt”: prompt},

)

Join the Google
Developer Program

If you haven’t already, create a Google
developer profile and select topics like AI
and databases so you’re always up to date.

https://codelabs.developers.google.com/?category=aiandmachinelearning
https://colab.research.google.com/github/googleapis/langchain-google-alloydb-pg-python/blob/main/samples/langchain_quick_start.ipynb
https://developers.google.com/profile/u/me/dashboard
https://developers.google.com/profile/u/me/dashboard

18

Putting these technologies to work . 5. 2 . 1 .3

Codelab: AlloyDB Agentic RAG
Application with MCP Toolbox

Learn how to create an AlloyDB cluster, deploy the MCP
toolbox, and build a RAG-based chat application that uses
the deployed toolbox to ground its requests.

You’ll learn how to:

•	 Deploy an AlloyDB Cluster

•	 Connect to AlloyDB

•	 Configure and deploy the MCP Toolbox Service

•	 Deploy a sample application using the deployed service

Start the codelab

I’d like to change my flight
to a later one in the day

CA8920EE

Welcome to Cymbal Air!
How may I assist you?

Absolutely! What is your
confirmation number?

Increasingly, every app is an AI app. Some industries
already have decades of experience incorporating
advanced statistical and ML models into their applications,
but the pace and breadth are accelerating. Let’s look
at an example of how intelligent agents have already
transformed customer-facing apps.

For years, an auto insurer’s app would have a customer fill
out a form, then make a single, rigid call to a risk model to
generate a quote. But now, instead of a form, a customer
has a natural conversation: “Hi, I’m looking for car
insurance for my 2025 Volkswagen Golf in Minneapolis.”

On Google Cloud, an AI agent built on AlloyDB AI might
then orchestrate the following series of actions:

•	 Use a tool to query the customer’s profile in AlloyDB,
retrieving their driving history and any loyalty discounts.

•	 Call an external API to fetch the latest safety ratings
and typical repair costs for a Volkswagen Golf.

•	 Use another tool to run a risk model on Vertex AI, but
now with a much richer, more complete set of data.

•	 Rather than just returning a price, the agent would
analyze the result and explain it in plain language,
suggesting optional add-ons: “For an extra $5 a month,
you could add windshield coverage, which is common
for this vehicle model.”

In this scenario, AlloyDB AI isn’t just feeding data into
a model—it’s the agent’s dynamic source of truth,
its long-term memory, and a key part of its toolkit.
The agent’s ability to orchestrate database lookups,
API calls, and model predictions is what makes it
fundamentally more powerful and useful.

Powering AI applications with AlloyDB AI

https://codelabs.developers.google.com/genai-db-retrieval-app?hl=en#0

19

Putting these technologies to work . 5. 2 . 1 .3

Meet your data science team

In this new agentic world, collaboration is key.
Your data science team might build and maintain
the core predictive model (like the risk engine),
but you, the developer, would build the agent
that brings it to life. You orchestrate how that
model is used alongside databases and APIs
to create a complete, interactive user experience.

Explore some examples of developers working
with data scientists to incorporate similarity search,
sentiment analysis, bot detection, and healthcare
predictions.

Building enterprise
AI apps faster
Google Cloud databases are simple to integrate with
your developer ecosystem. They support popular open
source database standards like PostgreSQL, making
it easier to migrate from legacy databases.

AlloyDB is optimized for enterprise AI apps that need
real-time and accurate responses, delivering world-class
vector embedding and search capabilities. It delivers
superior performance for transactional, analytical, and
vector workloads, and it runs anywhere, including on-
premises and on other clouds, enabling you to modernize
and innovate wherever you are.

AlloyDB AI is an integrated set of capabilities built into
AlloyDB to help you build performant and scalable AI
applications using your operational data. It helps you more
easily and efficiently combine the power of foundation
models with your real-time operational data.

Yannis Papakonstantinou
Distinguished Engineer, Query Processing,
Google Cloud

All of our databases have vector
search capabilities natively available.
That means you don’t have to deal
with complex data pipelines to
move your data to specialized vector
stores. Furthermore, you can easily
perform filter and join operations
on your relational data with your
familiar database interface. To top
it all, you get strong performance,
scalability, data protection, availability,
security, and compliance from your
database, which are core needs for
any application, AI or not.”

19

https://cloud.google.com/blog/products/databases/alloydb-and-vertex-ai-integration-for-generative-ai
https://cloud.google.com/alloydb
https://cloud.google.com/alloydb/ai

20

Putting these technologies to work . 5. 2 . 1 .3

For applications requiring global scale, transactional
consistency, and a 99.999% availability SLA, consider
Spanner, a fully managed multi-model database.
Spanner brings together relational, key-value, graph,
full-text search, and vector search capabilities to
enable a new class of AI-enabled applications that rely
on interconnected data and semantic search—such
as smarter recommendation engines in retail and
sophisticated fraud detection in financial services.

Try the tutorial

Tutorial: Personalized
recommendations using
Spanner and Vertex AI

Learn how to use AI to provide personalized
product recommendations in a sample
ecommerce app.

Infusing gen AI across Google Cloud databases

https://cloud.google.com/spanner
https://cloud.google.com/spanner/docs/ml-tutorial-generative-ai

. 2

21

Build with Google’s innovation. 1 .3 .4

At Google, we have over a decade of experience
innovating on real-world vector algorithms to support
our most popular services, including Google Search and
YouTube. We had to invent new ways of indexing and
searching vectors to meet the most demanding use cases.

Build with Google’s
innovation

Chapter 5

Connecting agents to your data

A powerful agent is one that can reliably access your data.
To make this connection seamless for developers, Google
Cloud supports two key requirements—deep integration
with popular agent frameworks and robust support for
open standards.

Deep framework integration

For developers building within established
ecosystems, we offer deep integrations with
frameworks like LangChain, LlamaIndex, and
Google’s Agent Development Kit. These provide
pre-built components that simplify using Google
Cloud databases for everything from vector stores
to chat message history. This path enables rapid
development by leveraging a rich set of existing
tools and patterns, like the built-in RAG workflows
used for personalized recommendations, question
answering, and customer service automation.

Open standards

For universal, long-term interoperability,
we’re also strong supporters of open standards.
For example, the MCP protocol provides a common,
framework-agnostic language for agents and
tools to communicate. To make this practical, our
MCP Toolbox provides the necessary components
to expose your Google Cloud database as a fully
compliant MCP endpoint.

This open approach prevents framework lock-in
and creates a more flexible, future-proof architecture
for your entire AI ecosystem, giving you the flexibility
to choose the best architectural approach for
your project.

1

 2

https://github.com/googleapis/genai-toolbox

. 2

22

Build with Google’s innovation. 1 .3 .4

Use AI to supercharge
database development
and management
Database technology is evolving fast, so it’s important
for database professionals to stay up to date.

Your operational database is key to your organization’s
applications. You want to ensure that data can flow in and
out smoothly and keep your application performing well.
Database management comes with a lot of challenges—
many platform engineers, database administrators, and
developers juggle ill-fitting tools, complex scripts, and
error-prone workflows to complete their tasks.

Google Cloud provides a unified, AI-powered experience,
driven by Gemini, to assist you across the entire database
journey. An integrated suite of tools helps you migrate
legacy databases, accelerate development, optimize
performance, and enforce data policies.

•	 Migration: Leverage foundation models to assess
and convert the schema or database resident
code when migrating databases. Easily learn
new PostgreSQL dialects, optimize SQL code,
and enhance readability for better productivity,
easier migration, and higher efficiency.

•	 Development: Build and deploy applications faster.
The Gemini command line interface (CLI) and Code
Assist give you the power to perform complex tasks
with simple natural language instructions—all from
your terminal. Generate code, fix bugs, summarize
documentation, and seamlessly query data with
database extensions. When you’re ready to build
and deploy the AI applications themselves, Gemini
Enterprise provides the environment to create and
manage the agents that will interact with your data.

•	 Unified management and optimization: Administrators
and platform engineers can manage their entire fleet of
diverse databases from a single dashboard in Database
Center. Integrated directly into this interface is Cloud
Assist, an AI assistant for operations. Cloud Assist
proactively monitors your fleet, identifies performance
bottlenecks, highlights potential security or compliance
issues, and provides actionable recommendations—all
accessible through natural language conversation.

•	 Data governance: Set data policies to improve security,
regulatory compliance, and control. Manage all your
data across data silos in one centralized location.
Use built-in data intelligence to check data validity
and compliance.

https://gemini.google.com/
https://blog.google/technology/developers/gemini-cli-extensions/
https://codeassist.google/
https://codeassist.google/
https://cloud.google.com/gemini-enterprise
https://cloud.google.com/gemini-enterprise
https://cloud.google.com/database-center/docs/overview
https://cloud.google.com/database-center/docs/overview
https://cloud.google.com/products/gemini/cloud-assist?hl=en
https://cloud.google.com/products/gemini/cloud-assist?hl=en

23

90-day free
Spanner trial Start now

30-day free
AlloyDB trial Start now

90-day free
Cloud SQL trial Start now

Continue your
AI journey with
Google Cloud
The AI era is truly here. And when organizations scramble
to implement new technologies, you have the opportunity
to chart your career path.

The more AI skills you develop, the more valuable
you’ll be. As companies become more heavily data-
driven, developers like you are increasingly taking
on stakeholder roles. Where will your path lead?
What skills will you invest in?

http://goo.gle/try_spanner
http://goo.gle/try_spanner
https://console.cloud.google.com/alloydb/create-trial-cluster
https://console.cloud.google.com/alloydb/create-trial-cluster
http://goo.gle/try_cloudsql
http://goo.gle/try_cloudsql

. 2

24

Build with Google’s innovation. 1 .3 .4

Start your
transformation
with Google
Cloud

Talk to an expert

http://goo.gle/try_cloudsql

