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Everyone is building with AI. It can improve search. It can 
personalize customer interactions. It can increase your 
developer productivity. It can even write bedtime stories.

But as a developer, you know the reality behind the  
hype. There’s a chasm between a simple AI demo  
and a production-ready enterprise application that  
users can trust.

In the AI era, developers are poised to become central 
to enterprise innovation, not just as coders but as major 
stakeholders. By connecting powerful models to reliable 
data, they’re uniquely positioned to produce key insights 
that drive business strategy and ensure customer 
expectations are met. However, this shift comes with  
its own set of challenges.   

That’s because general-purpose AI models are limited 
to answering general questions. But most apps need 
to answer specific questions (like “What’s my account 
balance?” or “Do you have a size 8 in stock?”), and that 
requires integrating business-specific operational 
information. Your databases can bridge this gap. 

Operational databases help you create apps and agents 
that are accurate in real time, contextual to the user’s 
experience, and reliable at enterprise scale.

We’ll show you how to get started in this guide.

Using databases  
to build better  
AI apps and agents 

Looking to get  
started right away?
Discover the six pillars  
for successful AI apps

Chapter 1

Go to page 5
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Foundation models

A foundation model is typically a large language 
model (LLM) that’s trained on a massive amount 
of general data. It can be used to generate text 
and other content, as well as perform other natural 
language processing (NLP) tasks. Many foundation 
models can understand and operate across different 
types of formats, such as images, audio, and video.

As foundation models are trained on generalized 
data, they can easily answer general questions 
such as “What’s the capital of France?”. But their 
knowledge is limited to the data they were trained 
on. We’ll look at methods to bridge that gap by 
integrating foundation models with your company’s 
operational databases, providing them with the real-
time, proprietary information they need.

Level up your  
users’ experience
Today’s users expect immediate and accurate answers  
to their questions. So your app is under pressure to deliver. 

Most of the information users are looking for sits in your 
operational databases—such as your CRM, ERP, and 
ecommerce data. 

Questions like:

General-purpose AI models can’t answer questions like 
these on their own—they need the information contained 
in your operational databases. To meet user expectations, 
integration of operational data into your app has moved 
from a “nice to have” to “complete by the end of the  
next sprint.”

Andi Gutmans
VP and GM, Data Cloud, Google Cloud

Databases are the fuel for the  
agentic era. Operational databases 
bridge the gap between foundation 
models and enterprise applications  
to help deliver contextual, relevant,  
and accurate user experiences.” 

When will my shipment arrive?

My order arrived damaged. Can I have a replacement?

Do you have a black size 7 in stock at a store near me?
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The tide is turning  
to developers
AI is tackling enterprise challenges,  
and it’s developers leading the charge. 

Uber is using AI agents to streamline customer 
service, helping users find solutions to their problems 
quickly. Deloitte has a “Care Finder” agent, built with 
Google Cloud, that helps care seekers find in-network 
providers—often in less than a minute.

When enterprises achieve these domain-specific, 
intelligent interactions, developers take a starring  
role. While data scientists are essential for creating  
the complex models that power AI, their expertise  
is a scarce resource. As a result, companies are relying  
on software developers to bridge the gap. This shift 
places developers at the center of the action, making 
them the critical engine for integrating AI models into 
domain-specific, intelligent applications.

How are they innovating?

They’re employing techniques like retrieval augmented 
generation to make foundation models dependable 
for enterprise applications. They’re using open-source 
protocols to connect AI agents and apps to their systems  
and frameworks more efficiently. And they’re using 
embeddings for proximity searches, particularly  
in vector-enabled databases. 

Not sure how to fully use AI to your advantage  
as a developer? Don’t worry. You will by the time  
you finish reading this paper.

The new era will be led by developers who build  
deep proficiency in how to best leverage and integrate  
AI technologies into applications. 

Let’s make sure that’s you.

Andi Gutmans
VP and GM, Data Cloud, Google Cloud

I believe we are entering a ‘post-
training era’ in which application 
developers will drive the bulk  
of the innovation in applying  
AI to solve business problems.”

https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
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AI is already here 

Today, AI isn’t just a “nice to have,” it’s a fundamental  
part of everyday apps—from displaying real-time  
product availability in your online store to automatically 
adjusting prices to match competitors. Even when the 
user might not realize it, AI is working in the background 
to personalize their experience based on past behavior 
and to protect their data from potential threats. 

The key need here is reliable, business-specific data.  
By ensuring that AI outputs are consistently aligned with  
the business’s true context, you can build more reliable  
and trustworthy AI applications that deliver precise  
and relevant insights.

The potential for implementing AI models and agents across 
your tech stack is extraordinary. But the stakes for you 
as a developer skyrocket accordingly. An agent with the 
power to take action across your system has an inherently 
larger blast radius than a simple chatbot that just answers 
questions. An incorrect fact is a problem, but an incorrect 
action in a production system is a crisis. That’s why it’s 
essential to architect for trust, building robust safeguards  
at the core of your application to verify an agent’s outputs—
and its reasoning—before it acts.

Even with high stakes, the solution lies in familiar territory. 
The same principles you use for building any mission-
critical application—rigorous validation and testing against 
a source of truth—are the keys to building safe AI. This is 
where your database becomes the cornerstone of your 
strategy. By providing verifiable, real-time data, it acts  
as the essential guardrail, allowing you to build intelligent, 
reliable, and fast applications with confidence.

Let’s look at some guidelines for enterprise AI apps.

AI models have come a long way, but it can still be 
challenging to return relevant and accurate results 
100% of the time. 

Notoriously, models have an occasional tendency 
to “hallucinate”—terminology for when an AI model 
generates a factually incorrect or even nonsensical 
answer. Since AI models are non-deterministic,  
there is always a non-zero probability they will 
produce an incorrect answer. As important as the 
quality of the input data for training and predictions 
is, AI agents and database integration also can make 
a significant difference.
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The most powerful enterprise AI apps augment  
foundation models by grounding them in operational  
data. This approach is the key to achieving the six pillars  
of a successful application: relevancy, reliability, 
observability, scalability, security, and cost-effectiveness.

An AI app that achieves these pillars will provide your 
users with the best experience, while minimizing risk  
to the business.

Six pillars for 
successful AI apps

Chapter 2

Relevancy

Deliver accurate and contextual information. 

Grounding your model’s responses in your operational 
database, which continuously stores and processes  
your data, means that your results will be more accurate, 
informative, and nuanced to the user’s specific intent.

1

Reliability
Ensure your app delivers when you need it to. 

To build users’ trust in your organization, make sure  
they can rely on your app. Your AI setup should  
be highly available, resilient to failures, be simple  
to maintain without causing disruptions or downtime,  
and support disaster recovery.

 2

Observability

Understand your agents’ “why.”

An AI agent can feel like a black box. Observability 
gives you the tools to look inside. It means tracing 
every step of an agent’s decision-making process—
from the initial prompt to the specific database  
queries it ran and the data it retrieved—to ensure 
reliability and build trust.

 3
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A modern database gives you a solid foundation for pillars 
like security and scalability, but these principles aren’t 
just features you can flip on. They have to be architected. 
Ultimately, it’s up to you, the developer, to build on that 
database foundation, weaving all six principles into the 
core logic of your AI agents to create a truly enterprise-
grade application.

Let’s dig into some of the technologies that developers 
are using.

Cost-effectiveness
Build smart and spend smart.

AI models, especially the most powerful ones, have 
significant operational costs, often tied to per-token 
pricing for API calls. A successful AI app must deliver 
value with a sustainable price tag, which requires  
making smart architectural choices. 

 6

Scalability 
Grow when you need to. Shrink, too.

Have the flexibility to scale up or down without large 
infrastructure changes. Look for a solution that gives  
you horizontal scalability (at least for read operations)  
and cross-region replication. Your app should be quick  
to deploy and scale, and operate with high throughput  
and low latency.

4

Security
Keep customer and company data secure.

You already ensure that your databases follow  
security best practices. Make sure that your AI tools  
do, too. Create an AI security policy and then ask about  
your providers’ security standards. A strong defense  
is built from every layer having security built in.

 5
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The technologies 
powering AI apps

Chapter 3

Users expect prompt, personalized interactions.  
But developers are finding that legacy databases  
aren’t cutting it due to their lagging AI capabilities. 
Thankfully, modern databases have excellent and  
rapidly evolving AI support, and they can help you  
bring these new AI capabilities to users. 

Here are a few of the technologies that modern 
enterprises are using to create AI apps that deliver  
more relevant and reliable results: 

•	 Long context windows

•	 Specialized AI models

•	 Agent-to-agent communication

•	 Tools

•	 Vector embeddings

•	 Vector search

•	 Retrieval augmented generation (RAG)

•	 Orchestration frameworks

Let’s have a look at each.
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This is a contrived example, since a short chat would 
easily fit into a typical context window. But if the relevant 
information is contained in a previous dialogue, tens or 
hundreds of thousands of tokens ago, then the chatbot 
might not be able to give a good answer.

A long context window comes with tradeoffs. It’s slower 
than other methods of improving model accuracy and 
may add new issues such as positional bias, sensitivity  
to changes in information placement, difficulty 
maintaining global coherence or performing complex 
reasoning, and high computational cost. And model 
vendors typically charge per token, so a longer context 
window will raise your costs.

Long context windows
A context window is the amount of information  
a foundation model can consider while generating  
a response. So the longer the context window,  
the more background information the model can 
consider for the response. 

A “token” is the smallest unit of text that carries 
meaning for a language model. It’s often slightly 
smaller than the size of a word. 

Let’s say a user is using a travel chatbot agent  
and includes the information that they’re heading  
to Paris in March. After a number of lines of dialog, they 
ask, “Can you recommend a good restaurant  
for my trip?”

The quality of the response will vary depending 
on the size of the context window. Any information 
outside of the model’s context window won’t be 
considered. So if the context window is too small,  
the model wouldn’t know where the trip is to. In this  
case, it may hallucinate or give an irrelevant response.

Please find me a hotel  
in Paris for March 8-15

Can you recommend a good 
restaurant for my trip?

What are some sights  
I should see?

Hôtel A Hôtel B Hôtel C

Rue A Tour B Boutique C

Sure can!! Where are  
you going? And when?

SHORT CONTEXT WINDOW RESPONSE:

LONG CONTEXT WINDOW RESPONSE:

Restaurant A Bistro B Cafe C
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Agent-to-agent 
communication
AI technology has rapidly progressed beyond  
single-purpose models into an era of multi-agent  
systems. These systems involve multiple AI agents  
acting, learning, communicating, and collaborating 
autonomously—with each specializing in a particular 
aspect of a task. Think of them like a team of experts, 
where one agent is a skilled researcher, another is an 
eagle-eyed fact checker, and a third is a seasoned writer 
who can best synthesize the results into a concise report.

This collaborative approach enables systems to handle 
more intricate workloads and produce more reliable 
outputs—at faster speeds. For this kind of system to work, 
the agents need to be able to understand each other, 
share information, and synchronize their actions to avoid 
bottlenecks, errors, or duplication of work.  That’s where 
the newly developed Agent2Agent Protocol (A2A) comes 
into play, allowing AI agents to communicate, securely 
exchange information, and coordinate actions—even if 
they were built by different vendors.

Tools 
For an AI agent to take meaningful action, it needs  
access to data. In AI terminology, tools are specific 
functions that provide data, for example, by querying  
a product database, calling an external API, or retrieving  
a customer’s order history. 

By giving agents access to a library of reliable tools,  
you enable them to interact with real-time data and 
execute multi-step tasks. The challenge is that for 
agents and tools to work together, especially in  
a multi-agent system, they need a common language. 

This is where the Model Context Protocol (MCP) 
becomes critical. MCP is an open-source standard 
that acts like a universal adapter for AI. Instead of 
building custom, brittle connectors for each new data 
source, MCP provides a universal plug. This means a 
developer can build a tool (like a get_order_status 
function) once and make it available to any agent 
that understands the MCP standard, regardless of the 
framework it was built with.

To make these tools available, they need to be hosted 
on a server that acts as a secure gateway. This server 
exposes your tools to the agentic world via the MCP 
standard. It handles the secure connection to your 
database, executes the function on the agent’s  
behalf, and returns the result in a format the agent  
can understand.

Specialized AI models
In some industries, the tide is shifting away from one-
size-fits-all gargantuan models to specialized AI models. 
These specialized models are trained on a limited, but 
deeper amount of information—a process often referred 
to as ‘fine-tuning’. For certain applications, this can enable 
apps and agents to answer more detailed questions.

As an example, imagine a medical practice that wants 
to create a specialized AI model that can help diagnose 
whether a mole is at risk of becoming cancerous.  
One way to approach this is to take an off-the-shelf  
open AI model, then tune that foundational model  
on a custom data set to build specialized knowledge. 

In this example, the medical practice might train the 
model on a database of millions of past diagnoses, 
including written descriptions of symptoms and visual 
images. In doing so, they’re training the model on the 
kind of information it needs to look for and the patterns 
to notice, such as asymmetrical shapes and abnormal 
discoloration. Now it can make a likely prediction based 
on millions of past cases—and articulate that prediction.

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://en.wikipedia.org/wiki/Model_Context_Protocol
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Vector embeddings
Vector embeddings convert text, images, or other  
content into vectors (numerical representations), enabling  
a foundation model to understand semantic similarities 
between words and phrases through a mathematical 
formula. In linear algebra, a vector represents a position  
in a virtual space, and if two objects are similar, then  
the vectors will be neighbors in that virtual space. 

Once converted, vector search enables retrieval of the 
most relevant information by looking at the distance 
between the vectors—a short distance means two pieces 
of content are semantically similar. This means that matches 
can be meaningful, rather than focusing on surface-level, 
keyword-based similarity to the input question. 

The foundation model defines your vector space,  
so the analysis of whether two vectors are near or far from 
another depends on the version of your specific model. 

This need to compare semantic meaning is why 
recommendation engines, search algorithms, and many 
other natural language processing applications rely on 
vector embeddings. They use vector search results 
to ground foundation model responses, minimize 
hallucinations, and provide more reliable information.  

Google Cloud databases include support for vectors, 
meaning you can streamline your embedding creation  
and access processes using a database you already know.

Working with vector embeddings

Databases like AlloyDB can generate and store 
billions of vector embeddings directly alongside 
your existing operational data, all within a single 
database. Learn how AlloyDB can:

•	 Generate and store vector embeddings 
based on a model

•	 Index and query embeddings using  
the pgvector extension

•	 Work with embeddings generated  
outside the database

Get started

The pgvector extension for 
PostgreSQL databases enables 
you to store, index, and query 
vectors—and run vector 
similarity searches.

https://github.com/GoogleCloudPlatform/generative-ai/blob/main/embeddings/intro-textemb-vectorsearch.ipynb
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings
https://github.com/pgvector
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Vector search
Vector search is the engine that powers semantic 
understanding in modern applications. If you search  
for music, movies, or books like the ones you already 
love—which are conceptually similar—that’s where  
vector search comes in.

Instead of matching keywords, vector search queries 
the numerical representations of your data—the 
embeddings—to find the closest semantic (conceptual) 
matches. It’s particularly useful when dealing with large 
datasets of unstructured data like images, text, or audio, 
where traditional search methods (based on exact 
matches) might not be effective. 

Vector search plays a crucial role in generative AI 
applications because it can also be used to ground  
AI models via prompts or tools, increasing relevance  
and reducing hallucinations. Having this functionality  
built into a general-purpose database means you can 
search without the need to manage a specialized  
vector database or ETL pipeline.

Choosing a search approach

Deciding which search algorithm to use is a classic 
engineering trade-off between accuracy and 
performance. Your choice between an exact  
or an approximate algorithm will depend on  
the specific requirements of your application.

K-nearest neighbors (KNN):  
The exact method

The brute-force approach guarantees perfect 
recall (accuracy) by comparing your query vector 
against every other vector in your dataset. While this 
provides the mathematically precise ground truth, 
the computational cost is immense. It is best suited 
for offline or academic workloads where absolute 
precision is the top priority.

Approximate nearest neighbor (ANN):  
High-performance

This is the approach used by virtually all large-
scale production systems. ANN algorithms use 
sophisticated indexing techniques to intelligently 
partition the vector space. Their ability to navigate 
to the most likely search region means they can find 
highly relevant neighbors with incredible speed, 
trading a small, often negligible, amount of precision  
for massive gains in performance and scalability.

Read more

An example search workflow

Generate embeddings with your data and pgvector 
functionality. This example takes plain-text input 
and fetches the nearest neighbors from a database, 
relying on model-driven semantic parsing of the 
text’s meaning.

SELECT id, name FROM items

  ORDER BY complaint_embedding

  <-> embedding(‘gemini-embedding-001’,  
‘wind and rain protecting red jacket  
for women’)::vector LIMIT 10;

https://cloud.google.com/alloydb/docs/ai/example-embeddings
https://docs.cloud.google.com/alloydb/docs/ai/work-with-embeddings?resource=google_ml#query
https://docs.cloud.google.com/alloydb/docs/ai/work-with-embeddings?resource=google_ml#query
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Retrieval augmented 
generation (RAG)
Retrieval augmented generation is an AI technique that 
combines the strengths of traditional information retrieval 
systems—such as databases—with the capabilities of AI 
models. It grounds your foundation model with fresh or 
domain-specific data from your database to power more 
accurate, up-to-date, and relevant responses.

This grounding can be approached in more than one 
way. In a classic RAG workflow, the application first 
retrieves relevant data and then augments the prompt 
by “stuffing” this context directly into the model’s input. 
A more modern and flexible approach, however, is to 
provide the AI agent with tools. Instead of pre-fetching 
data, the developer gives the agent a function (e.g., 
search_customer_orders) that it can choose to call 
when it needs information. This tool-based method  
allows the agent to reason more effectively and handle 
more complex, multi-step queries.

Regardless of the method, RAG is highly efficient.  
By retrieving only the necessary data, it reduces the 
reliance on large context windows and, most importantly, 
provides the specific context needed to generate highly 
accurate and relevant responses.

Critically, RAG enables you to use the foundational model 
as-is, without asking the vendor to update it every time 
you update your database.

Meet AlloyDB

AlloyDB is Google Cloud’s PostgreSQL-compatible 
database that offers superior performance, availability, 
and scale. It’s optimized for enterprise AI apps that 
need real-time and accurate responses. It delivers 
superior performance for transactional, analytical,  
and vector workloads—and offers the same vector 
search algorithm (ScaNN) used by Google Search.

And with Gemini, you get AI-powered assistance 
through every stage of the database journey, from 
development and performance optimization to fleet 
management, governance, and migration.

AlloyDB can deliver up to 4 times faster vector queries 
and up to 10 times faster filtered vector search queries 
than the HNSW index in standard PostgreSQL.

AlloyDB AI helps developers more easily and efficiently 
combine the power of foundation models with real-
time operational data by providing built-in, end-to-end 
support for vector embeddings, natural language 
processing, and other AI needs. 

AlloyDB Omni is a downloadable edition of AlloyDB built 
with portability and flexibility in mind. Run enterprise-
grade, AI-enabled applications anywhere: on premises, 
at the edge, across clouds, or even on your laptop.

Build AI apps with AlloyDB AI.

Get started

https://cloud.google.com/blog/products/ai-machine-learning/rag-with-databases-on-google-cloud
https://cloud.google.com/alloydb
https://gemini.google.com/
https://cloud.google.com/products/alloydb?hl=en
https://cloud.google.com/alloydb/ai
https://cloud.google.com/alloydb/omni
https://cloud.google.com/alloydb/docs/ai
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Let’s see how RAG works in a common scenario:  
a chatbot agent for a retailer. 

A customer wants a suggestion for a toy for a 
five-year-old child. Using only a foundation model, 
the chatbot could reply about general trends and 
age appropriateness, but could not align those 
suggestions with products the retailer actually sells. 

By augmenting the standard foundation model with 
real-time inventory and product information from 
the retailer’s operational database, the chatbot can 
use RAG to answer a wide range of questions about 
availability, pricing, and return policies. It can even 
provide a pointer to the store closest to the customer 
that has the recommended toy in stock. That’s the 
type of personalized response that helps close a sale.

What’s a prompt?

You’re probably already familiar with the idea of a prompt: the input that you provide to a model  
to elicit a response. When using consumer-oriented AI, it’s the question or statement that  
you type into the text field: “Gemini, what’s the largest stadium in the world?” 

Inside AI apps, the prompt becomes much more powerful. It evolves in two key ways:

1 2Context-augmented prompts: In a classic 
RAG system, the application first retrieves 
relevant data from a database, then augments 
the user’s question with this data. The final 
prompt sent to the model includes both the 
original question and the retrieved context.

Instructional agent prompts: In modern agentic 
systems, the prompt evolves further into a 
mission briefing. Instead of just stuffing in raw 
data, the prompt provides instructions that tell an 
agent how to find the answer. This prompt might 
include the user’s goal, a description of available 
tools (like a database query function or an API), 
and rules for how the agent should behave. 

So, while prompts are changing, they are still critical. They’re the primary mechanism 
through which developers guide and control the behavior of powerful AI agents.
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Operational information is returned from  
the database

The agent receives the data from the tool/
database and synthesizes it with the original 
query and calls the foundation model to 
generate a final, fact-based answer

An application-specific verification check on the 
resultant output takes place, and the process is 
repeated if necessary to improve the answer

The app returns a response to the user

How does RAG typically work?

The user enters a question (prompt) 
into the app

The application uses a foundation model  
to understand user intent and formulate  
a data query

The app calls the required tools,  
which are hosted on the MCP server 

The MCP server executes the tools,  
which query the operational database 

The database uses the embedding model  
and vector search to get results

1

 9
 5

 2

 3

 4

A verification step, often using the database as a 
source of truth, is a critical safeguard against model 
hallucinations and ensures enterprise-grade reliability.

The more enterprises can ground foundation models 
in their real-time information and enterprise data, the 
more accurate their apps become. 

 8

 6

  7
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Orchestration frameworks
While a single call to a foundation model can be powerful, 
the frontier of AI development lies in building autonomous 
agents. An agent isn’t just a simple prompt-and-response 
loop—it’s a system that can plan, reason, and execute 
complex tasks like managing conversations, using tools, 
and handling API calls. Building these capabilities from 
scratch requires a lot of repetitive “plumbing” code.

This is where orchestration frameworks are key. They 
provide the operating system for your agents by managing 
intricate workflows and streamlining essential tasks. 
For example, a simple but critical task is maintaining 
conversation history. A foundation model is inherently 
stateless—it doesn’t remember past interactions. Instead 
of manually coding the logic to store, retrieve, and append 
chat history to every prompt, an orchestration framework 
provides pre-built instructions to handle this automatically.

By providing this essential scaffolding, orchestration 
frameworks make it possible to build sophisticated, 
reliable, and scalable agents much more quickly,  
while keeping your code simple.

Some leading orchestration frameworks are LangChain, 
LlamaIndex, and Google’s own Agent Development Kit.

Not all AI technologies  
are created equal
We’ve covered a number of different techniques for 
achieving more accurate responses from AI models.  
How do they stack up? Let’s compare.

Consider an HR chatbot agent that employees can  
use to ask questions about policies. A foundation model 
could reference general HR information, but would be 
unable to reference particular company policies.

And it goes without saying that when an employee wants  
to know how much annual leave they have available,  
they want to know the exact number of hours in their 
leave balance, not a statement about legal requirements  
or a general average. 

It’s possible to input an employee’s leave history into 
a long context window, but this method can be slow, 
prohibitively expensive, and may not produce the right 
result if the context window isn’t long enough. 

You can attempt to use vector search over the 
employee’s leave history, but again, this may not 
produce accurate results because a semantically 
relevant answer isn’t what the employee is interested in.

With RAG accessing the employee’s documents  
and company policy, the agent can respond with  
the employee’s exact leave balance. Guided by  
an orchestration framework, the agent would select  
the right tool—like a get_leave_balance function.  
This tool, exposed via a server using a standard like  
MCP, would securely query the HR database and return  
the exact number, allowing the agent to provide a precise 
and trustworthy answer.

Learn how to build with:
•	 LangChain

•	 LlamaIndex

•	 Agent Development Kit

https://www.langchain.com/
https://www.llamaindex.ai/
https://google.github.io/adk-docs/
https://cloud.google.com/alloydb/docs/ai/langchain
https://cloud.google.com/alloydb/docs/ai/build-llm-powered-applications-using-llamaindex
https://google.github.io/adk-docs/
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Putting these 
technologies to work

Chapter 4

As an AI developer using techniques like RAG, there  
are a number of decisions you need to make. Each choice 
comes with tradeoffs that you’ll want to consider  
depending on your particular use case.

Here are some questions to ask:

•	 Which foundation model(s) should I use?  
Different models have distinct strengths—for example, 
some have built a reputation for exceptional coding 
abilities and others for rigorous logical reasoning.  
Your choice should align with your application’s primary 
function, and you can easily integrate multiple models, 
such as Gemini and others.

•	 Which database should I use?  
This decision will be driven not only by your AI needs,  
but by your database needs more broadly.

•	 How should I retrieve information from the database:  
by creating custom APIs or using SQL queries?  
Custom APIs can execute any database query, including 
structured SQL queries and vector search, on behalf 
of the model—and are accurate and secure. However, 
they’re not flexible enough to handle the full range of 
end-user questions. SQL statements are fast but take 
skill to write, including the skill to make them secure.

•	 Should I use an orchestration framework?  
This depends on the complexity of what you’re building. 
Typically, as soon as your app needs to function like an 
agent, using multi-step chains of reasoning, deciding 
between different tools (like calling an API vs. querying  
a database), or implementing a complex RAG workflow,  
a framework provides the essential scaffolding.

•	 Do you need a specialized vector database? 
Not necessarily. Many popular databases include support 
for vectors, and your existing database may allow you  
to easily add a vector column or index. This way, you don’t 
need to learn and install a new database. 

All Google Cloud databases offer low-latency vector 
search, so you get instantaneous, relevant responses 
no matter how large the dataset or how many parallel 
requests hit the system. This makes for a better user 
experience across applications like search, conversational 
AI, and personalized recommendations. 

Although vector search is important, your app probably 
also needs to store non-vector data and be scalable, 
secure, and highly available. A specialized vector database 
may or may not be the right fit for your core considerations, 
depending on the requirements of your app. 
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Codelabs: Putting RAG  
to work
Even the best off-the-shelf RAG techniques require  
some learning. Below, we’ve included a couple  
of tutorials to help you get started implementing  
RAG in your application. 

Google Developers Codelabs are guided tutorials  
that give you hands-on coding experience. In addition  
to the labs we highlight in this paper, you can go deeper  
and search the entire Codelabs library to find articles 
about the technologies you’re looking at, such as  
RAG or AlloyDB.

Explore all AI & Machine Learning codelabs

Colab: Use RAG and the Netflix  
movie dataset using LangChain

If you’ve decided that a framework is right for  
your application, try this codelab. 

Learn how to create a powerful, interactive  
AI application using RAG powered by AlloyDB  
for PostgreSQL and LangChain. This application  
is grounded in a Netflix Movie dataset, enabling you  
to interact with movie data in exciting new ways.

You’ll learn how to: 

•	 Deploy an AlloyDB instance

•	 Use AlloyDB as a VectorStore

•	 Use AlloyDB as a DocumentLoader

•	 Use AlloyDB for ChatHistory storage

Get the notebook

# create the ConversationalRetrievalChain

rag_chain = ConversationalRetrievalChain.from_llm(

lm=llm,

retriever=retriever,

verbose=False,

memory=memory,

condense_question_prompt=condense_question_
prompt_passthrough,

combine_docs_chain_kwargs={“prompt”: prompt},

)

Join the Google  
Developer Program

If you haven’t already, create a Google 
developer profile and select topics like AI  
and databases so you’re always up to date.

https://codelabs.developers.google.com/?category=aiandmachinelearning
https://colab.research.google.com/github/googleapis/langchain-google-alloydb-pg-python/blob/main/samples/langchain_quick_start.ipynb
https://developers.google.com/profile/u/me/dashboard
https://developers.google.com/profile/u/me/dashboard
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Codelab: AlloyDB Agentic RAG  
Application with MCP Toolbox 

Learn how to create an AlloyDB cluster, deploy the MCP 
toolbox, and build a RAG-based chat application that uses 
the deployed toolbox to ground its requests. 

You’ll learn how to: 

•	 Deploy an AlloyDB Cluster

•	 Connect to AlloyDB

•	 Configure and deploy the MCP Toolbox Service

•	 Deploy a sample application using the deployed service

Start the codelab

I’d like to change my flight  
to a later one in the day

CA8920EE

Welcome to Cymbal Air! 
How may I assist you?

Absolutely! What is your 
confirmation number?

Increasingly, every app is an AI app. Some industries 
already have decades of experience incorporating 
advanced statistical and ML models into their applications, 
but the pace and breadth are accelerating. Let’s look 
at an example of how intelligent agents have already 
transformed customer-facing apps. 

For years, an auto insurer’s app would have a customer fill 
out a form, then make a single, rigid call to a risk model to 
generate a quote. But now, instead of a form, a customer 
has a natural conversation: “Hi, I’m looking for car 
insurance for my 2025 Volkswagen Golf in Minneapolis.”

On Google Cloud, an AI agent built on AlloyDB AI might 
then orchestrate the following series of actions:

•	 Use a tool to query the customer’s profile in AlloyDB, 
retrieving their driving history and any loyalty discounts.

•	 Call an external API to fetch the latest safety ratings  
and typical repair costs for a Volkswagen Golf.

•	 Use another tool to run a risk model on Vertex AI, but 
now with a much richer, more complete set of data.

•	 Rather than just returning a price, the agent would 
analyze the result and explain it in plain language, 
suggesting optional add-ons: “For an extra $5 a month, 
you could add windshield coverage, which is common  
for this vehicle model.”

In this scenario, AlloyDB AI isn’t just feeding data into  
a model—it’s the agent’s dynamic source of truth,  
its long-term memory, and a key part of its toolkit.  
The agent’s ability to orchestrate database lookups, 
API calls, and model predictions is what makes it 
fundamentally more powerful and useful.

Powering AI applications with AlloyDB AI

https://codelabs.developers.google.com/genai-db-retrieval-app?hl=en#0
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Meet your data science team

In this new agentic world, collaboration is key.  
Your data science team might build and maintain  
the core predictive model (like the risk engine),  
but you, the developer, would build the agent  
that brings it to life. You orchestrate how that  
model is used alongside databases and APIs  
to create a complete, interactive user experience.

Explore some examples of developers working  
with data scientists to incorporate similarity search, 
sentiment analysis, bot detection, and healthcare 
predictions. 

Building enterprise  
AI apps faster
Google Cloud databases are simple to integrate with  
your developer ecosystem. They support popular open 
source database standards like PostgreSQL, making  
it easier to migrate from legacy databases.

AlloyDB is optimized for enterprise AI apps that need  
real-time and accurate responses, delivering world-class 
vector embedding and search capabilities. It delivers 
superior performance for transactional, analytical, and 
vector workloads, and it runs anywhere, including on-
premises and on other clouds, enabling you to modernize 
and innovate wherever you are. 

AlloyDB AI is an integrated set of capabilities built into 
AlloyDB to help you build performant and scalable AI 
applications using your operational data. It helps you more 
easily and efficiently combine the power of foundation 
models with your real-time operational data.

Yannis Papakonstantinou
Distinguished Engineer, Query Processing, 
Google Cloud 

All of our databases have vector  
search capabilities natively available. 
That means you don’t have to deal  
with complex data pipelines to  
move your data to specialized vector 
stores. Furthermore, you can easily 
perform filter and join operations  
on your relational data with your 
familiar database interface. To top  
it all, you get strong performance, 
scalability, data protection, availability, 
security, and compliance from your 
database, which are core needs for  
any application, AI or not.” 
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https://cloud.google.com/blog/products/databases/alloydb-and-vertex-ai-integration-for-generative-ai
https://cloud.google.com/alloydb
https://cloud.google.com/alloydb/ai
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For applications requiring global scale, transactional 
consistency, and a 99.999% availability SLA, consider 
Spanner, a fully managed multi-model database. 
Spanner brings together relational, key-value, graph, 
full-text search, and vector search capabilities to 
enable a new class of AI-enabled applications that rely 
on interconnected data and semantic search—such 
as smarter recommendation engines in retail and 
sophisticated fraud detection in financial services.

Try the tutorial

Tutorial: Personalized  
recommendations using  
Spanner and Vertex AI

Learn how to use AI to provide personalized 
product recommendations in a sample 
ecommerce app.

Infusing gen AI across Google Cloud databases

https://cloud.google.com/spanner
https://cloud.google.com/spanner/docs/ml-tutorial-generative-ai
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At Google, we have over a decade of experience 
innovating on real-world vector algorithms to support 
our most popular services, including Google Search and 
YouTube. We had to invent new ways of indexing and 
searching vectors to meet the most demanding use cases. 

Build with Google’s 
innovation

Chapter 5

Connecting agents to your data

A powerful agent is one that can reliably access your data. 
To make this connection seamless for developers, Google 
Cloud supports two key requirements—deep integration 
with popular agent frameworks and robust support for 
open standards.

Deep framework integration

For developers building within established 
ecosystems, we offer deep integrations with 
frameworks like LangChain, LlamaIndex, and 
Google’s Agent Development Kit. These provide 
pre-built components that simplify using Google 
Cloud databases for everything from vector stores 
to chat message history. This path enables rapid 
development by leveraging a rich set of existing 
tools and patterns, like the built-in RAG workflows 
used for personalized recommendations, question 
answering, and customer service automation.

Open standards

For universal, long-term interoperability,  
we’re also strong supporters of open standards.  
For example, the MCP protocol provides a common, 
framework-agnostic language for agents and 
tools to communicate. To make this practical, our 
MCP Toolbox provides the necessary components 
to expose your Google Cloud database as a fully 
compliant MCP endpoint.

This open approach prevents framework lock-in  
and creates a more flexible, future-proof architecture  
for your entire AI ecosystem, giving you the flexibility  
to choose the best architectural approach for  
your project.

1

 2

https://github.com/googleapis/genai-toolbox
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Use AI to supercharge 
database development  
and management
Database technology is evolving fast, so it’s important  
for database professionals to stay up to date. 

Your operational database is key to your organization’s 
applications. You want to ensure that data can flow in and 
out smoothly and keep your application performing well. 
Database management comes with a lot of challenges—
many platform engineers, database administrators, and 
developers juggle ill-fitting tools, complex scripts, and 
error-prone workflows to complete their tasks. 

Google Cloud provides a unified, AI-powered experience, 
driven by Gemini, to assist you across the entire database 
journey. An integrated suite of tools helps you migrate 
legacy databases, accelerate development, optimize 
performance, and enforce data policies. 

•	 Migration: Leverage foundation models to assess  
and convert the schema or database resident  
code when migrating databases. Easily learn  
new PostgreSQL dialects, optimize SQL code,  
and enhance readability for better productivity,  
easier migration, and higher efficiency.

•	 Development: Build and deploy applications faster. 
The Gemini command line interface (CLI) and Code 
Assist give you the power to perform complex tasks 
with simple natural language instructions—all from 
your terminal. Generate code, fix bugs, summarize 
documentation, and seamlessly query data with 
database extensions. When you’re ready to build 
and deploy the AI applications themselves, Gemini 
Enterprise provides the environment to create and 
manage the agents that will interact with your data.

•	 Unified management and optimization: Administrators 
and platform engineers can manage their entire fleet of 
diverse databases from a single dashboard in Database 
Center. Integrated directly into this interface is Cloud 
Assist, an AI assistant for operations. Cloud Assist 
proactively monitors your fleet, identifies performance 
bottlenecks, highlights potential security or compliance 
issues, and provides actionable recommendations—all 
accessible through natural language conversation.

•	 Data governance: Set data policies to improve security, 
regulatory compliance, and control. Manage all your 
data across data silos in one centralized location.  
Use built-in data intelligence to check data validity  
and compliance.

https://gemini.google.com/
https://blog.google/technology/developers/gemini-cli-extensions/
https://codeassist.google/
https://codeassist.google/
https://cloud.google.com/gemini-enterprise
https://cloud.google.com/gemini-enterprise
https://cloud.google.com/database-center/docs/overview
https://cloud.google.com/database-center/docs/overview
https://cloud.google.com/products/gemini/cloud-assist?hl=en
https://cloud.google.com/products/gemini/cloud-assist?hl=en
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90-day free 
Spanner trial Start now

30-day free 
AlloyDB trial Start now

90-day free  
Cloud SQL trial Start now

Continue your 
AI journey with 
Google Cloud
The AI era is truly here. And when organizations scramble  
to implement new technologies, you have the opportunity 
to chart your career path. 

The more AI skills you develop, the more valuable  
you’ll be. As companies become more heavily data- 
driven, developers like you are increasingly taking  
on stakeholder roles. Where will your path lead?  
What skills will you invest in?

http://goo.gle/try_spanner
http://goo.gle/try_spanner
https://console.cloud.google.com/alloydb/create-trial-cluster
https://console.cloud.google.com/alloydb/create-trial-cluster
http://goo.gle/try_cloudsql
http://goo.gle/try_cloudsql


.    2

24

Build with Google’s innovation. 1 .3 .4

Start your  
transformation  
with Google  
Cloud

Talk to an expert

http://goo.gle/try_cloudsql

